Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy.

نویسندگان

  • E Rosalie Witjas-Paalberends
  • Nicoletta Piroddi
  • Kelly Stam
  • Sabine J van Dijk
  • Vasco Sequeira Oliviera
  • Claudia Ferrara
  • Beatrice Scellini
  • Mark Hazebroek
  • Folkert J ten Cate
  • Marjon van Slegtenhorst
  • Cris dos Remedios
  • Hans W M Niessen
  • Chiara Tesi
  • Ger J M Stienen
  • Stephane Heymans
  • Michelle Michels
  • Corrado Poggesi
  • Jolanda van der Velden
چکیده

AIMS Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. METHODS AND RESULTS Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. CONCLUSION Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sarcomeric hypertrophic cardiomyopathy: genetic profile in a Portuguese population.

BACKGROUND Sarcomeric hypertrophic cardiomyopathy has heterogeneous phenotypic expressions, of which sudden cardiac death is the most feared. A genetic diagnosis is essential to identify subjects at risk in each family. The spectrum of disease-causing mutations in the Portuguese population is unknown. METHODS Seventy-seven unrelated probands with hypertrophic cardiomyopathy were systematicall...

متن کامل

Unexpectedly Low Mutation Rates in Beta-Myosin Heavy Chain and Cardiac Myosin Binding Protein Genes in Italian Patients With Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease. Fourteen sarcomeric and sarcomere-related genes have been implicated in HCM etiology, those encoding β-myosin heavy chain (MYH7) and cardiac myosin binding protein C (MYBPC3) reported as the most frequently mutated: in fact, these account for around 50% of all cases related to sarcomeric gene mutations, which are coll...

متن کامل

Spectrum of Mutations in Hypertrophic Cardiomyopathy Genes Among Tunisian Patients.

BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common cardiac genetic disorder associated with heart failure and sudden death. Mutations in the cardiac sarcomere genes are found in approximately half of HCM patients and are more common among cases with a family history of the disease. Data about the mutational spectrum of the sarcomeric genes in HCM patients from Northern Africa are limited....

متن کامل

Mutations in sarcomere protein genes in left ventricular noncompaction.

BACKGROUND Left ventricular noncompaction constitutes a primary cardiomyopathy characterized by a severely thickened, 2-layered myocardium, numerous prominent trabeculations, and deep intertrabecular recesses. The genetic basis of this cardiomyopathy is still largely unresolved. We speculated that mutations in sarcomere protein genes known to cause hypertrophic cardiomyopathy and dilated cardio...

متن کامل

A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy

The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 99 3  شماره 

صفحات  -

تاریخ انتشار 2013